Data-Driven Process Discovery - Revealing Conditional Infrequent Behavior from Event Logs

نویسندگان

  • Felix Mannhardt
  • Massimiliano de Leoni
  • Hajo A. Reijers
  • Wil M. P. van der Aalst
چکیده

Process discovery methods automatically infer process models from event logs. Often, event logs contain so-called noise, e.g., infrequent outliers or recording errors, which obscure the main behavior of the process. Existing methods filter this noise based on the frequency of event labels: infrequent paths and activities are excluded. However, infrequent behavior may reveal important insights into the process. Thus, not all infrequent behavior should be considered as noise. This paper proposes the Data-aware Heuristic Miner (DHM), a process discovery method that uses the data attributes to distinguish infrequent paths from random noise by using classification techniques. Dataand control-flow of the process are discovered together. We show that the DHM is, to some degree, robust against random noise and reveals data-driven decisions, which are filtered by other discovery methods. The DHM has been successfully tested on several real-life event logs, two of which we present in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtering out Infrequent Behavior from Process Event Logs

In the era of “big data” one of the key challenges is to analyze large amounts of data collected in meaningful and scalable ways. The field of process mining is concerned with the analysis of data that is of a particular nature, namely data that results from the execution of business processes. The analysis of such data can be negatively influenced by the presence of outliers, which reflect inf...

متن کامل

Noise Filtering of Process Execution Logs based on Outliers Detection

This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is...

متن کامل

Discovering Block-Structured Process Models from Event Logs Containing Infrequent Behaviour

Given an event log describing observed behaviour, process discovery aims to find a process model that ‘best’ describes this behaviour. A large variety of process discovery algorithms has been proposed. However, no existing algorithm returns a sound model in all cases (free of deadlocks and other anomalies), handles infrequent behaviour well and finishes quickly. We present a technique able to c...

متن کامل

Discovering More Precise Process Models from Event Logs by Filtering Out Chaotic Activities

Process Discovery is concerned with the automatic generation of a process model that describes a business process from execution data of that business process. Real life event logs can contain chaotic activities. These activities are independent of the state of the process and can, therefore, happen at rather arbitrary points in time. We show that the presence of such chaotic activities in an e...

متن کامل

Interactively Exploring Logs and Mining Models with Clustering, Filtering, and Relabeling

Real-life event logs often contain many data quality issues, which obstruct existing discovery algorithms from discovering meaningful process models and process analysts from conducting further process analysis. In this paper, we present an integrated tool that provides support for dealing with three of these data issues: logs comprising recordings of multiple heterogeneous variants of a proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017